Game changer for APl Testing: KushoAl

What is KushoAl?

KushoAl is an Al Agent for API testing that generates exhaustive test suites for your APIs in minutes — all you
need to do is input your APl information and sit back while KushoAl figures out what real-world scenarios can
occur for your APl in production and write ready-to-execute tests for them.

How KushoAlwork?

KushoAl is designed to work the same way a Dev or QA works while testing an API. You can tell KushoAl about
your APl by uploading a spec (OpenAPI, Postman Collection, cURL, RAML and many more to come) or by
entering information about your APl manually.

After that, KushoAl analyses different aspects of your APl and its payload, which ranges from simple things like
what's the data type of fields to complex stuff like semantics and the format of the value. If you're using specs
to provide APl information, KushoAl will also pick up cues from the field and API description that you've written
in your specs. Based on this, KushoAlgenerates scenarios that can occur for your APl in production and creates
tests that you can execute directly from the KushoAl web app.

Different ways to create a test suite in KushoAl:

To create a test suite, click on the "Create" button on Test Suites page and pick a format for sharing your API
information. You can input your APl information into KushoAl in four different ways:

1. Manually enter API details
2. Import OpenAPI specs
3. Import Postman Collections

4. Copy and paste cURL command

“ ¢ @ % appkushoai/all-test-suites +r ® 1 0 :

ALL TEST SUMTES

i AP} Tastis U Testing i My Workspace
Test Suites 9 A 20/20 test generations & My Workspac

A test suite contains all tests generated by Kusho for your AP

DESCRIFTION URL

-

Provider - Provider Photo upload PoST httpsy//stage-apifirstapp.io/api/v1/providers/{providerid)/upload v -

Provider - Provider Photo upload P0ST httpsy//stage-api.firstapp.io/api/v1/providers/fproviderid}/upload .
Provider - Provider Photo upload POST hittps://stage-api.firstapp.io/api/v1/providers/{providerid)/upload ¥

. Use Copilot
Provider - Create One Provider post hitps://stage-api.firstapp.io/api/vi/providers
L

T E— Poovidar o s ecai S, ipsd/stoge shfistapplolapitproviders

Provider - Create One Provider POST httpsy//stage-api.firstapp.io/api/v1/providers

updateProvider PUT hitps://stage-api firstapp.io/api/v1/providers/{providerid)

Feedback

KushoAl Works 9 S —— Pt https//stage-apifirstapp.iofapi/v1/providers/{providerid) .

xpor H

w v
" §
& Export H
h Export H

& Export

Get One Providers &1 hitps//stage-apifirstapp.io/api/v1/providers/{providerld]

Get All Providers GE _https://stage-apifirstapp.io/api/vi/providers/{stores)

&« C @ % appkushoai/all-test-suites T ® In] (2]

ALLTEST SUITES

i AP Testi Ul Testi i My Workspace v
Test Suites ing A 20720 test generations & ly Workspac

A test suite contains all tests genes
Add APl inputs for Kusho using any of the options below

PR—— I

Enter basic details about your API like

HPI HTTP method, URL query parameters Enter APl Details
PT—— ——————

Provider - Provider Photc
Provider - Provider Photc > ;

K< Use Copilot

Import via Postman Collection (v2.1)
Import Postman Collection
Provider - Create One Prc JsON ‘ @ Export

S -
Creats test suit ——

bl e ‘ Import cURL Command

command

Provider - updateProvide
instantly generate tests for your APls.

- Get One Providers GET hittp: rage-apifirstapp.io/api/v1/providers/{providerld}

- Create One Prc

- Create One Prec

Test Suites Page:
You can view all the test suites created to date on the Test Suites page.

Clicking the down arrow will expand the test suite row to show details about the API.

D A test suite contains all tests generated by Kusho for your API.

Q_ Search Test Suites..

DESCRIPTION URL GROUPS
Prosacior Provacler Plicvies tapicne] POSThttps://stage-apifirstapp.io/api/v1/providers/{provideridy/upload - '

Provider - Provider Photo upload POST https://stage-api firstapp.io/api/v1/providers/{providerldy/upload v

AL TEST SUITES

Test Suites AP Testing [VRCETY A 20720 test generations & My Workspace

IPTION URL

Provider - Provider Photo upload POST hitpsy//stage-api firstapp.io/api/v1/providers/{providerid}/upload .

Upgrade to Enterprise

1. Manually enter API details

If you’re building a backend application and don’t have it all documented yet, you can just manually enter your
APl information.

1. On the Test Suites page, click on the "Create" button

2. Click on the "Enter API Details" button

ALLTEST SUITES

Test Suites PURTEEN UlTesting A 20/20 test generations & My Workspace ~

‘ @ A test suite contains all tests gene ‘
—_— Add API inputs for Kusho using any of the options below

=0 S I

Enter basic details about your APl like

DESCRIPTION HTTP method, URL, query parameters l Enter API Details GROUPS

etc.

Provider - Provider Photc -

l Import via OpenAPI Specification JSON Import OpenAPI Specification

Import via Postman Collection (v2.1) .
15;; ap ’ Import Postman Collection

Create test suites by entering a cURL
Import cURL Command
command

Kush these inputs to instantly generate tests for your APls
Provider - Provider Photc

3. Enter basic details about your API, like URL, headers, path/query params, and request body here
4. Click on "Generate" to start test generation. This typically takes 3-4 minutes based on how big the API
payload is.

information about your API below. Kusho's Al engine uses this information to generate a custom test suite for your AP)

HTTP method

GET

Endpoint URL
R R .) R Use Copilot
For endpoints path params, enclose them in curly braces as shown in the example. Sample values for path params should b ied in the "Path Params (JSON)™ field.
¢ Example:

for and an endpoint with path params "foo" and "bar”, the endpoint URL should be https://www.example.com/foo/bar

Headers (JSON)

Headers to be sent while making the API call. You can put your authentication information, etc. here. The value needs to be in JSON format.
Example:

) £

“Authorization”: "Bearer [your api key]"”,

2. Import from OpenAPI specs:

If you use Swagger and have an OpenAPI spec available for your APls, you can use this spec to provide API
information to KushoAl and get started. Using OpenAPI spec allows you to import multiple APIs into KushoAl in
one go and provide additional information about your APIs (datatypes of fields, range of values,
optional/compulsory, etc.).

Here's how you can use an OpenAPI spec to create a test suite:
1. On the Test Suites page, click on the "Create" button

2. Click on the "Import OpenAPI Specification" button

Test Suites PURSUNN UlTesing A 20720 test generations & My Workspace ~

1 A test suite contains all tests gene

e

DESCRIPTION

Add API inputs for Kusho using any of the options below

Enter basic details about your APl like
HTTP method, URL. query parameters Enter API Details
etc.

Provider - Provider Photc

Provider - Provider Photc ./ Import via OpenAPI Specification JSON l Import OpenAPI Specification Y :
e ,.
F Use Copilot

Import via Postman Collection (v2.1) .
Import Postman Collection
Create One Prc JSON v i Export
Provider - CrastOne P :
Create test suites by entering a cURL
Import cURL Command
command
N :
T v ful
= fol

Provider - Create One Prc

updateProvide

Kusho uses these inputs to instantly generate tests for your APls
updateProvide

3. Paste your OpenAPI spec or upload the JSON file

Upload OpenAPI Spec JSON File

@ Upload JSON File
10 |}

Use Copilot

4 Confirm

4. Select the APIs that you wish to import

° Upload JSON File
Choose the APIs for which test suites are to be generated:

Unselect All 4/931 APIs selected

Select APls

meta/root

GET |

security-advisor

Review URL & GET [advisories

3
security-advis at-global-a
GET [advisories/{ghsa_id}

: apps/get-authenticated
4 Confirm o EHEETE
G

apps/create-from-mai

POST [app-manifests/{code}/conversions

5. Enter the server URL you wish to use for testing. Don't worry about having to stick to a single URL. You

can use environments and variables to set up as many different URLs as you want

° Upload JSONFile Confirm server to be used

SERVER

Server | https:/fapi.github.com
L

° Select APIs

@ Review URL

6. Click on "Generate" to start the test generation

° Upload JSON File

° Select APls

All done, you are good to go!

7. Generation using OpenAPI spec happens in async. You'll receive an email once the generation is
completed, after which you can view your test suites on the Test Suites page. In the meantime, you can
use the Test Suite Generation Status page to check the status of your APIs.

3. Import from Postman Collections:

If you have your APIs on Postman, you can use the Postman collection option to bring them to KushoAl.
Importing the Postman collection allows you to import multiple APIs into KushoAl in one go.

Here's how it works:

1. On the Test Suites page, click on the "Create" button

2. Click on the "Import Postman Collection" button

Test Suites

‘ (@ A test suite contains all tests gene

DESCRIPTION

Provider - Provider Photc
Provider - Provider Phott

- Provider Photc
Provider - Create One Prc
Provider - Create One Pr«
Provider - Create One Pr¢

- updateProvide

Provider - updateProvide

APl Testing [URCE T A 20720 test generations & My Workspace ~

Add API inputs for Kusho using any of the options below

Enter basic details about your API like

HTTP method, URL query parameters Enter API Details GROUPS

etc.

Import via OpenAPl Specification JSON | Import OpenAPI Specification :

I rt via Postman Collecti 2.1 :
kmport vis Postman Collection (v21) Import Postman Collection
JSON
Create test suites by entering a cURL

Import cURL Command
command

Use Copilot

Kusho uses these inputs to instantly generate tests for your APls

3. Export the collection JSON form Postman
4. Paste your collection JSON or upload the JSON file

Paste Postman Collection JSON Upload Postman Collection JSON File

@ Upload JSON File
v2.1 version of Postman Collections is supported

1 {}

Select APIs

Review Undefined Variables

g Use Copilot

Review Defined Variables

5. Select the APIs that you wish to import

Q Upload JSON File

Choose the APIs for which test suites are to be generated:

@ Select APIs
Unselect All 4/20 APIs selected

. uploadimage - uploads an image
o

Revievi tindefined Variahles POST {{baseUrl}}/pet/:petidfuploadimage

{petid} - Find pet by 1D

GET {{baseUrl}}/pet/:petid

Review Defined Variables
{pertid} - Updates a pet in the store with form data

b
& POST {{baseUrl}}/pet/:petid
{petid} - Deletes a pet

DELETE {{baseUrl}}/pet/:petid

Confirm

f.-ndByS tatus - Finds Pets by status
GET {{baseUrl}}/pet/findByStatus?status=available&status=available

findByTags - Finds Pets by tags

6. If you're using variables, provide/review their values. #TODO: Explain why a user needs to provide their
values when they're already present on Postman.

@ upioad JSON File Set values for undefined variables

VARIABLE

Q Select APls

apikey

Kushodl uses these values to compute scenarios during its test generation process, Variables with valugs will help

@ Review Undefined Variables KushoAl generate richer scenarios

4 Review Defined Variables

@ unioad JsON File Confirm values of defined variables

°. Select APl

baseUrl https://petstore swagger.iofv2

o Review Undefined Variables <« Back

7. Click on "Generate" to start the test generation

0 Upload JSON File

‘ All done, you are good to go!

0 Select APls < Back

0 Review Undefined Variables

Generation using Postman collection happens in async. You'll receive an email once the generation is
completed, after which you can view your test suites on the Test Suites page. In the meantime, you can
use the Test Suite Generation Status page to check the status of your APIs.

4. Import using cURL:

If you're an OG @ and use cURL for testing, you can add your APl information using cURL commands like this:

1. On the Test Suites page, click on the "Create" button

| @ A test suite contains all tests gene:

Q, Search Test Sui
Enter basic details about your API like
DESCRIPTION HTTP method, URL, query parameters Enter API Details GROUPS

etc.

Add API inputs for Kusho using any of the options below

Provider - Provider Phot«

Provider - Provider Phot %4 [Import via OpenAPI Specification JSON] Import OpenAPI Specification

Provider - Provider Phot«

Import via Postman Collection (v2.1) .
: Import Postman Collection
Provider - Create One Pr¢ JSON

- Create One Pre

Create test suites by entering a cURL
Sy Import cURL Command
=1

Provider - Create One Prc

Provider - updateProvide

Kusho uses these inputs to instantly generate tests for your APls
Provider - updateProvide

2. Paste your cURL command here. Please note that they process one cURL at a time.
3. Click on “Generate” to start the test generation

cURL Command . ste 1 cURL command at a time

Generate tests

4. Generation using cURL command happens in async. You'll receive an email once the generation is

completed after which you can view your test suites on the Test Suites page. In the meantime, you can
use the Test Suite Generation Status page to check the status of your APIs

Test suite details:

Once you're done creating a test suite for your API, clicking on a test suite row on Test Suites page will take you

to the Test Suite Details page. All the tests generated by KushoAl for your API are displayed on this page, along
with a bunch of operations that you can perform on them.

Let's take a look at what's present on this page and how you can use the operations available here to test your
API.

Test suite name:

At the top of the page is the name of your test suite. This name is generally derieved from your spec/collection
name concatenated with the name of your API. In case of test suites which were created by manually entering
APl information or using cURL command, the name is auto-generated. In case you want to rename the test
suite, you can do so by clicking on the pencil icon next to the name.

ALL TEST SUITES Bank Account Creatian
My Workspace ~

Bank Account Creation & | AP Details -

Test suite APl information:

The "API Details" button displays the APl information for a test suite. This is the information that we picked up
from a spec/collection or was entered by you manually during the creation of the test suite. During test

generation, KushoAl uses this APl information to create payloads for each test. This APl information is editable,
and changing this will trigger regeneration of the tests in a test suite. More details about this here.

ALL TEST SUITES : Bank Account Creation

Bank Account Creation ® | APIDetails-

My Workspace -

Bank Account Creation © Apipetails ~ My Workspace

Filter tests by types:

KushoAl generates tests belonging to various categories. Click on "Filter Tests By Types" accordion to view all
the different categories for which KushoAl has generated tests. You can also use the categories here to filter
tests based on their categories.

Filter Tests By Types v

All Tests Executed

Filter Tests By Types ~
Positive 12 Negative 85 Authentication & Missing fields n Null{zerofempty value 22 Invalid value 36 Data type 12

Overflow @ Other 36

Test counts:
The test counts section, as the name suggests, displays counts of tests in various states
o All tests: This is the total number of tests present in a test suite
e Executed: This is the number of tests executed using any of the available run options

e Passed/Failed: This is the number of tests marked as passed/failed based on assertions

All Tests Executed 1@ Failed

Tests Table:

This is the most important section of this page. This is where all the tests generated by KushoAl (and
later added by you) are shown. Let's take a look at each column of this table:

DEFALLT v () Variables & Workbench % Add Tests using Payload 5 Pre Run Script % Add Tests using Al

o

Test with empty PAN number NEGATIVE .
Details ~
NULL/ZERD/EMPTY VALUE

Test with null PAN number HNEGATIVE NULL/ZERO/EMPTY VALUE

Test with PAN number in all uppercase NEGATIVE)
Details ~
INVALID VALUE

Test with PAN number in all lowercase NEGATIVE)
Details ~
INVALID VALUE

Test with PAN number containing non-English characters :
Details ~
NEGATIVE INVALID VALUE

Test with very long PAN number NEGATIVE OVERFLOW Details ~

Test with an integer as PAN number NEGATIVE DATA TYPE Details ~

Test with PAN number having leading and trailing spaces)
Details ~
NEGATIVE INVALID VALUE

Test with incorrect authentication information NEGATIVE o
etalls ~
AUTHENTICATION

1. Checkbox - This can be used for selecting multiple tests and performing actions on them
like running, adding/removing tags, etc.

2. Test description - This is a high-level plain English description of the objective of the test (e.g. Test
without proper auth token, Test with null value for name field). Next to the description, you'll see the
categories and tags for the test.

3. Run - This column has the button for running a test. The column header has a "Run All" button, which
can be used to execute all tests in one go. The gear icon next to "Run All" button can be used to
configure running-related parameters like wait time, parallelization, etc.

4. Details - Clicking this button will open a drop-downthat displays the Test Details section with the
following information:

Run All Tests
Generate Assertions

DESCRIPTION : ot | STATUS CODE ASSERTIONS ACTIONS

Test with uppercase characters in UUID for "path_params.providerid® SEMANTIC Details ~

a. Status and Time: After running a test, the status code received in the APl response and time
taken by the API to execute will be displayed here.

b. Request: This is the API payload for the test. This is a variation of the APl information that was
imported/entered during test generation based on what's being tested. This payload is editable.

c. Response: After running a test, the APl response will be displayed here

d. Assertions: Assertions are JS code used for validating the API response to determine if a test has
passed or failed (similar to asserts in unit tests)

e. Assertion Results: This is where results for each assertion will be displayed after running a test

Test with empty PAN number HNEGATIVE

Details ~
NULL/ZERO[EMPTY VALUE

Time:

5. Status Code - After running a test, the status code in APl response is displayed here

6. Assertions - Pass/fail status of the test is displayed here after running a test. Note that if assertions are
not present, this will be blank or "N/A"

7. Actions - Actions that can be performed on a test (like delete, copy UUID for a test, etc.) are displayed
here.

Test with empty PAN number NEGATIVE

Details ~ Passed

MNULLJZERDJEMPTY VALUE

Test Suite Toolbar:

This section displays a bunch of operations that can be performed on a test suite. Let's go over what these
operations are:

1. Environment selector: Use this switch between environments. Environments allow you to set up
different sets of variables (like URL, auth tokens, etc.) for each environment (e.g. localhost, qa, stage,
pre-prod, prod) that you plan to use for testing.

2. Variables: Variables can be used to store values that keep changing (e.g. auth tokens, APl keys, etc.).
Use this to add/edit/delete variables.

3. Workbench: You can use this feature to perform bulk operations on tests like editing API payloads,
generating and editing assertions for all tests in a single pane.

Generate Report: Reports provide a high-level summary of a test run. Use this button to send a report
in an email or to download a report.

Add Tests using Payload: Use this to add more tests to the test suite by defining API payload.

Add Tests using Al: You can use this to add tests using natural language prompts. Specify what you wish
to test in plain English and let KushoAl come up with API payload and assertions.

Pre Run Script: Use this to run custom logic in JavaScript before starting test suite run. This can be used
for automating stuff like fetching a fresh dynamic authentication token from an auth server and setting
it in a variable before every run of a test suite.

~ () variables [Generate Report [Add Tests using Payload 15 Pre Run Script % Add Tests using Al

Running a Single Test:

This is the simplest way to run tests on KushoAl. Running like this is useful when you're fixing a specific issue

and want to check if it's working as expected by running a particular test.

Here's how you can run a single test and check the results:

1.
2.

4,

Go to the Tests table on Test Suite Details page
Click on the "Run" button to execute a test

Test with empty PAN number MNEGATIVE m

Details ~
NULL/ZEROJEMPTY VALUE

Once the running is completed, you'll see the response in "Response" tab of Test Details section (which
can be opened by clicking on "Details" button)

Test with empty PAN number NEGATIVE .
NULL/ZEROEMPTY VALUE

Assertions () Assertions Results

"Assertions Results" tab will contain details about which assertions have passed/failed if you have
defined assertions

Test with empty PAN number NEGATIVE

Details - Passed
NULL/ZERC/EMPTY VALUE

Response Assertions (@)

expect(response, "response key should exist") to.have.property('response');

PASS expect(response.response, "success key should exist").to.have.property('success’);

PASS expect{response.response.success, "success key should be a boolean").to.be.a('boolean');
PASS expect{response.response, "account_id key should exist").to.have.property('account_id');
PASS expect(response.response.account_id, "account_id key should be a string").to.be.a('string');
PASS expect(response, "statusCode key should exist").to.have.property('statusCode');

PASS expect(response,statusCod atusCode key should be a number").to.be.a('number');

5. Status code and status of assertions is displayed under "Status" and "Assertions" columns respectively.

Details ~ Passed

Test with empty PAN number NEGATIVE m

NULL/ZERO/EMPTY VALUE

6. Test counts will be updated once the execution is done. Note that the pass/fail count will change only if
you have defined assertions.

Running All Tests:

If you want to run all tests in a test suite in one go, you can use the "Run All" option. Running tests like this is
useful to verify if all functionality for an APl is working as expected and getting a high level report.

Here's how to use the "Run All" option:

1. Click on "Run All" button located in the column header of Tests table to run all tests in one go

DEFAULT L () Varisbies & Workbench @ Generate Report [Add Tests using Payload 15 Pre Run Script % Add Tests using Al

RUN ALL o

2. By default, tests are run one after another with a 1000ms delay in between runs. If you wish to change
this delay and run tests parallely, you can change the configuration using Run settings. Depending on
your backend's rate limit and resources, you can tweak the wait time and no. of tests executed in
parallel options to make sure your don't end up getting rate limited or crash the backend.

3. Once the running is completed, you'll see the response in "Response" tab of Test Details section (which
can be opened by clicking on "Details" button)

4. "Assertions Results" tab will contain details about which assertions have passed/failed if you have
defined assertions

5. Status code and status of assertions is displayed under "Status" and "Assertions" columns respectively.

6. Test counts will get updated once the execution is done. Note that pass/fail count will change only if
you have defined assertions.

7. You can use the "Generate Report" button to get a high level report of your test run.

Assertions:

Assertions allow you to define expected behaviour of a test. Using assertions, you can automate validation of
API response every time a test runs and get a pass/fail status for the test. This works very similar to how asserts
work in unit testing. We expect the assertions to be in JS using the Chai.js expect syntax. If you've already

used Chai.js or have some experience with unit testing, this should be straightforward for you.

For a bank account creation API, this is the expected response:

"response”: {

"success"

"account_id":

s

"headers™: {
"content-length":
"content-type":
“date™: '
"server": '

5

"statusCode": 200,

"error": null,

"elapsedTime":

expect(response.response,

expect(response.response.success,

expect(response.response, "

expect(response.response.account_id, "

expect(response.response.api id artsWith

expect(response, "statu .to_have._property('stat
expect(response.statusCode, o c uld be a num ").to.be.a(

expect(response.statusCode, "sta).to.equal(260);

Note that the top-level response object is called response. This object contains the API response

(under response field) along with other additional fields like headers, statusCode, elapsedTime (response time
of the API), etc. that might be useful for assertions. Fields inside the response object can be accessed

like response.<field-name>.

Assertions are executed after running a test. You can see them under the "Assertions" tab in Test details:

Test with all valid inputs as specified in

API information m Details - P |

POSITIVE

Status: 200 Time: 289ms

Request Response Assertions (1) Assertions Results

Use chai.js expect() statements or generate using Al. Generate using Al %
Learn more about them here, .

"}.to.have.property (' suc
").to.be.a('t

ve,property

The results are shown under the "Assertion Results" tab. Here, you'll see the status for every assertion you've
added.

Test with all valid inputs as specified in

APl information m Details ~ Passed

POSITIVE

Status: 200 Time: 289ms

Request Response Assertions (@

expect{response.response, "success key should exist").to.have property('success');
expect(response.response.success, "success key should be a boolean").to.be.a('boolean’);
expect(response.response, "account_id key should exist").to.have property(‘account_id');
expect(response.response.account_id, "account_id key should be a string") .to.be.a('string');
expect(response.response.api_id.startsWith("ACCT-"), "api_id should start with ACCT-").to.equal(true);
expect(response, "statusCode key should exist").to.have.property('statusCode’);
expect{response.statusCode, "statusCode key should be a number").to.be.a('number');

expect(response.statusCode, "statusCode shoud| be 200").to.equal(200);

All assertions are executed independently of each other. So even if 1 assertion fails, all assertions after it will
still get executed.

Status: 200 Time: 283ms

Request Response Assertions (D

expect(response.response, "success key should exist").to.have.property('success');
expect(response.response.success, "success key should be a boolean”).to.be.a('boolean’);
expect(response.response, "account_id key should exist").to.have.property('account_id');
expect(response.response.account_id, "account_id key should be a string”).to.be.a('string');

expect(response.response.api_id.startsWith("ACCT-"), "api_id should start with ACCT-").to.equal(false);
Error - api_id should start with ACCT-: expected true to equal false

expect(response, "statusCode key should exist").to.have.property('statusCode');
expect(response.statusCode, "statusCode key should be a number").to.be.a('number');

expect(response.statusCode, "statusCode shoud| be 200").to.equal(200);

We mark a test as failed even if a single assertion fails. This status is shown under the "Assertions" column of
Test table. You will see a blank or "N/A" here, if you've not written assertions for a test.

Test with all valid inputs as specified in
APl information

Details
POSITIVE

Status: 200 Time: 283ms

Request Response Assertions (i)

expect(response.response, "success key should exist”).to.have.property('success’);
expect{response.response.success, "success key should be a boolean").to.be.a('boolean’);
expect(response.response, "account_id key should exist”).to.have.property('account_id');
expect{response.response.account_id, "account_id key should be a string").to.be.a('string'};

expect(response.response.api_id.startsWith("ACCT-"), "api_id should start with ACCT-").to.equal(false);
Error - api_id should start with ACCT-: expected true to equal false

expect(response, "statusCode key should exist").to.have.property('statusCode');

The pass/fail count under Test counts is calculated using a test's pass/fail status. Note that this count changes
only if your tests have assertions.

All Tests Executed

Passed 0@ Failed

Test Reports:

The Test Report feature in Kusho provides a comprehensive view of API test execution results. The report
presents test outcomes in a clear tabular format, making it easy to track and analyze test suite performance.

Report Structure:

Summary Section:
The report header includes key metrics:

Total number of tests

e Number of executed tests
¢ Number of passed tests
e Number of failed tests
e Total execution time (in milliseconds)
e Execution timestamp (UTC)
e Executor's email
Test Suite Details:
Each test suite is presented with:
e Suite name
e Complete test case listing
e Individual test results
e Status codes
e Failed assertions (if any)

Report Components:

Test Case Information
Each test case includes:

¢ No. (Sequential number)

¢ UUID (Unique identifier)

e Test Case description

o Result (PASS/FAIL)

e Status Code

e Failed Assertions (N/A if passed)
Result Categories:

e PASS - Test executed successfully

e FAIL - Test execution failed

e Status Code - HTTP response code (e.g., 401)

o Failed Assertions - Details of any failed test conditions
Features:

e Comprehensive test execution summary

e Detailed individual test results

e Clear pass/fail indicators

e HTTP status code tracking

o Failed assertion tracking

¢ Unique test case identification
Use Cases:

e APl testing validation

e Quality assurance documentation

e Test coverage reporting

o Regression testing verification

e Compliance documentation

Report Structure:

KUSHO

Executed By

Total | # Executed | # Passed | # Failed | Time (ms) Executed At
17 17 17 5842 2025-03-07 07:20:59 UTC | akash@ (S: o m

Test suite - Teams - Team List

No. UUID Test Case Result | Status Code | Failed Assertions
1 6d9c8308-0964-4872-8b1b-27d08f8b6aa3 | Test with array value for query parameter 'foo' PASS |200 N/A
2 | b71010¢3-cd9b-42f9-bdd3-7d1851bbefel | Test with boolean value (true) for query parameter 'foo' PASS |200 N/A
3 Tel71Be0-bf33-48d4-81f3-914dad7ebddf | Test with empty value for query parameter 'foo' PASS (200 N/A
4 | 3d494a2b-6547-4604-941f7-c0alc4ca38d9 | Test with special characters for query parameter 'foo' PASS (200 N/A
5 | a7eb0d64-bec2-4fe2-b735-283013fc6bef | Test with integer value for query parameter 'foo' PASS |200 N/A
6 1600fa90-0d42-4850-ae05-7d77dbddb564 | Test with leading and trailing spaces for query_params.foo field |PASS |200 N/A
7 73b15701-bb28-4eb4-b592-alf4f817e385 | Test with integer value as a string for query params.foo field PASS (200 N/A
8 e7ad4fe4-45e3-476a-aa0b-e603cfa961bf | Test with very long string for query params.foo field PASS |200 N/A
9 | 710f79da-9e0f-4e24-bb0b-1e19f8fc81el | Test with non-English characters string for query_params.foo field [PASS | 200 N/A
10 | ab935a9f-8d68-4725-9ce6-cb85d0bale70 | Test with all lowercase string for query_params.foo field PASS |200 N/A
11 | ed39e99c-115a-426f-a936-3b546c357883 | Test with all uppercase string for query_params.foo field PASS |200 N/A
12 | 983e648b-826b-4755-a93f-e43e755dfb6d | Test with null value for query_params.foo field PASS |[200 N/A
13 | 71637a31-8822-44ce-9c8f-f5b8279d7669 | Test with empty string for query params.foo field PASS |200 N/A
14 | ec6276b5-7372-4812-aB817-b498b62 1cb9f | Test with valid input for query params.foo field PASS (200 N/A
15 | 4154627f-36cc-4e82-8bc8-173375aade5e | Test with given field missing - query_params.foo PASS |[200 N/A
Conclusion:

KushoAl introduces a significant shift in API testing by automating the generation of comprehensive and high-
coverage test suites using Al-driven logic. Its ability to parse OpenAPI specifications, Postman Collections, and
cURL commands allows it to quickly identify input parameters, expected outputs, edge cases, and potential
failure scenarios. The tool streamlines test creation and validation while supporting integration into Cl/CD
pipelines, enabling continuous and scalable APl quality assurance. For engineering teams seeking to enhance
test reliability, maintainability, and speed, KushoAl provides a robust and intelligent solution that aligns well

with modern DevOps practices.

